Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Acc Chem Res ; 57(9): 1310-1324, 2024 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-38619089

RESUMO

ConspectusIn this Account, we discuss our group's research over the past decade on a class of functionalized boron clusters with tunable chemical and physical properties, with an emphasis on accessing and controlling their redox behavior. These clusters can be thought of as three-dimensional aromatic systems that have distinct redox behavior and photophysical properties compared to their two-dimensional organic counterparts. Specifically, our lab has studied the highly tunable, multielectron redox behavior of B12(OR)12 clusters and applied these molecules in various settings. We first discuss the spectroscopic and electrochemical characterization of B12(OR)12 clusters in various oxidation states, followed by their use as catholytes and/or anolytes in redox flow batteries and chemical dopants in conjugated polymers. Additionally, the high oxidizing potential and visible light-absorbing nature of fluoroaryl-functionalized B12(OR)12 clusters have been leveraged by our group to generate weakly coordinating, photoexcitable species that can promote photooxidation chemistry.We have further translated these solution-phase studies of B12(OR)12 clusters to the solid state by using the precursor [B12(OH)12]2- cluster as a robust building block for hybrid metal oxide materials. Specifically, we have shown that the boron cluster can act as a thermally stable cross-linking material, which enhances electron transport between metal oxide nanoparticles. We applied this structural motif to create TiO2- and WO3-containing materials that showed promising properties as photocatalysts and electroactive materials for supercapacitors. Building on this concept, we later discovered that B12(OCH3)12, the smallest of the B12(OR)12 family, could retain its redox behavior in the solid state, a previously unseen phenomenon. We successfully harnessed this unique behavior for solid-state energy storage by implementing this boron cluster as a cathode-active material in a Li-ion prototype cell device. Recently, our group has also explored how to tune the redox properties of clusters other than B12(OR)12 species by synthesizing a library of vertex-differentiated clusters containing both B-OR and B-halogen groups. Due to the additive qualities of different functional groups on the cluster, these species allow access to a region of electrochemical potentials previously inaccessible by fully substituted closo-dodecaborate alkoxy-based derivatives.Lastly, we discuss our research into smaller-sized redox-active polyhedral boranes (B6- and B10-based cluster cores). Interestingly, these clusters show significantly less redox stability and reversibility than their dodecaborate-based counterparts. While exploring the functionalization of closo-hexaborate to create fully substituted derivates (i.e., [B6R6Hfac]-), we observed unique oxidative decomposition pathways for this cluster system. Consequently, we leveraged this oxidative instability to generate useful alkyl boronate esters via selective chemical oxidation. We further explored a closo-decaborate cluster as a platform to access electrophilic [B10H13]+ species capable of directly borylating arene compounds with unique regioselectivity. Upon chemical oxidation of the arylated decaborate clusters, we successfully synthesized various aryl boronate esters, establishing the generality of the oxidative cluster deconstruction concept.Overall, our work shows that boron clusters are an appealing class of redox-active molecules, and this fundamental and understudied property can be leveraged for constructing novel materials with tunable physical and electrochemical properties, as well as producing unique chemical reagents for small molecule synthesis.

2.
Inorg Chem ; 62(37): 15084-15093, 2023 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-37667823

RESUMO

We report the synthesis and characterization of various compounds containing the 1,7,9-hydroxylated closo-dodecahydrododecaborate (B12H9(OH)32-) cluster motif. Specifically, we show how the parent compound can be synthesized on the multigram scale and further perhalogenated, leading to a new class of vertex-differentiated weakly coordinating anions. We show that a postmodification of the hydroxyl groups by alkylation affords further opportunities for tailoring these anions' stability, steric bulk, and solubility properties. The resulting dodecaborate-based salts were subjected to a full thermal and electrochemical stability evaluation, showing that many of these anions maintain thermal stability up to 500 °C and feature no redox activity below ∼1 V vs Fc/Fc+. Mixed hydroxylated/halogenated clusters show enhanced solubility compared to their purely halogenated analogs and retain weakly coordinating properties in the solid state, as demonstrated by ionic conductivity measurements of their Li+ salts.

3.
Nat Commun ; 14(1): 1671, 2023 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-36966132

RESUMO

Introducing a tri-coordinate boron-based functional group (e.g., boronic ester) into an unactivated C-H bond in the absence of directing groups is an ongoing challenge in synthetic chemistry. Despite previous developments in transition metal-catalyzed and -free approaches, C-H borylation of sterically hindered arenes remains a largely unsolved problem to date. Here, we report a synthetic strategy of a two-step, precious metal-free electrophilic C-H borylation of sterically hindered alkyl- and haloarenes to generate aryl boronic esters. The first step relies on electrophilic aromatic substitution (EAS) induced by cage-opening of Cs2[closo-B10H10], forming a 6-Ar-nido-B10H13 product containing a B-C bond, followed by a cage deconstruction of arylated decaboranes promoted by diols. The combination of these two steps allows for the preparation of aryl boronic esters that are hardly accessible by current direct C-H borylation approaches. This reaction does not require any precious metals, highly-engineered ligands, pre-functionalized boron reagents, or inert conditions. In addition, the unique properties of a non-classical boron cluster electrophile intermediate, B10H13+, afford a regioselectivity with unique steric and electronic control without the undesirable side reactions.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...